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A one-dimensional, multigroup, discrete-ordinates technique for computing electron energy 
deposition in plasmas is detailed. The Fokker-Planck collision operator is employed in the 
continuous approximation and electric fields (considered external) are included in the 
equation. Bremsstrahlung processes are not treated. Comparisons with analytic and Monte 
Carlo results are given. Fits to deposition profiles and energy scaling are proposed and 
discussed for monoenergetic and Maxwellian sources in the range O-150 keV, with and 
without uniform fields. 

I. INTRODUCTION 

The multigroup, discrete-ordinates (S,) method is well known in neutral particle 
applications [ 1-4 ] but extensions to electron transport require modifications Primary 
difficulties are linked to the nonlocal Coulomb interaction and the presence of elec- 
tromagnetic fields. Mean free paths for Coulomb interactions are small and scattering 
is highly anisotropic. These two facts strain traditional S, methods, differencing 
schemes, and acceleration techniques. Electromagnetic fields redistribute particles in 
energy and direction and act as anisotropic collision terms. Addition of the Lorentz 
term (E + v x B) to the electron transport equation necessitates a reworking of 
numerical algorithms used to solve the equation. These modifications are detailed 
appropriately in the analysis. 

Electron energy deposition calculations in plasmas frequently rely upon Monte 
Carlo transport techniques [S, 61 in the nondiffusive limit. While Monte Carlo 
treatments of transport are certainly widespread and well suited to complex 
geometries, they can be time consuming and costly. For one-dimensional applications 
the S, approach is efftcient. We have constructed a genera1 purpose electron 
transport module for one-dimensional applications, ESN [7 J., and employ it in this 
study of supratherma1 electrons. At the 2-4% statistical variance level in Monte 
Carlo calculations, the S, approach is 50 to 100 times faster, which is no real 
surprise. Electron transport resembles deep neutral particle penetration since mean 
free paths are relatively short. Additionally, suprathermal electron energy deposition 
is a topic of interest in laser fusion studies [8-lo]. Transport phenomena have been 
modeled using both multigroup, flux limited diffusion theory and Monte Carlo 
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techniques. A versatile and simpler S, description is valuable for physical insight, 
parameter comparisons, and as a computational bridge spanning streaming to 
diffusive regimes. Within the S, approach, we parametrize deposition profiles in 
plasmas and examine energy scaling as a function of distance for monoenergetic and 
Maxwellian electron sources in the keV range. 

II. FOKKER-PLANCK ELECTRON TRANSPORT EQUATION 

The steady state electron transport equation with Fokker-Planck collision term 
[ 11, 121 and electric fields 1’71 is written 

-l”---- e E'V,,f+S, rnOV 

with, as usual, (e/m,) the electron charge to mass ratio, Z the effective ion charge,f 
the electron flux, v = Qv the electron velocity, V, V, spatial and velocity gradients, E 
the electric field, S the external source, and 

cosine ,U in one-dimensiona 1 geometries, 

v . r = vrp, (3) 

using the operator identity I131 

with n the electron number density, T,, the classical electron radius, and /i the 
Coulomb cutoff. The first term on the right-hand side of Eq. (I), called the diffusion 
term, merely redistributes particle directions, while the second term, called the friction 
term, slows electrons down. The diffusion term describes electron-ion scattering while 
the friction term details electron-electron interactions. The third term involving the 
electric field upscatters and downscatters electrons in energy and also redistributes 
particle directions, as can be seen from the following reduction. Defining the direction 

and taking E along P, we obtain 

(5) 
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Cteariy, the first term on the right-hod side of Eq. (5) slows down or speeds up 
electrons, depending on the sign of p, while the second term merely changes particle 
directions. 

In the various geometries, the one-dimensional form of 0 . Vf is 

(plane) 

(cylinder) 

(sphere) 

(6) 

for 

,u* + n2 + p = 1, tan+ (7) 

Differencing of all terms, especially the angular part of Eq. (6) which is more 
complex, should recover the analytic form for divergenceless flow in the infinitesimal 
limit [ 11. 

The Coulomb cutoff A is model dependent to some degree [ I1 1. For electrons, we 
take the relativisticaliy corrected expression 

A,= 1.22 x 1015 
0 
f (1 - ~~/c~)-“~ Tin, (8) 

with T measured in keV and n in cmm3. For ions, we use the Spitzer 114) 
compilation with tabulates In /ii in the limited ranges 

104cm-3<n< 1018cm-3, 50°K < T< 106K, 

and the quantum mechanical expression based on the minimum impact parameter 
above those limits (which is appropriate for our applications) 

nj = 1.30 x lo’5(T/n)“*)~/~8). (9) 

with p and m, in KeV. Charge neutrality requires the balance 

n= \’ 

i-Z”8 

niZi3 (10) 

and the ion term in Eq. (1) has been renormalized to the electron density n and 
effective charge Z through the relationship 
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The Fokker-Planck collision term is used to describe local charged particle 
scattering in plasmas. Its derivation is based upon the assumption that the Coulomb 
cross section peaks in the forward direction and that elastic collisions with small 
changes in velocity are most probable. Suprathermal electron penetration in plasmas 
is a representative phenomenon when background temperatures are not high and 
collective plasma effects are not important. Such is the case in laser irradiated target 
applications where suprathermal (hot) electrons produced by resonant absorption of 
intense laser light at a critical density surface propagate through a considerably 
cooler plasma background of relatively low Z material. At the critical surface, 
electron densities scale as (lO*‘/A*) cm p3 approximately, with J the laser wavelength 
in micrometers. It is thought that the only plasma effect of importance in these laser 
pellet applications is the localized space-charge separation at the corona sheath of the 
plasma which produces large electric fields holding the hot electrons in containment. 
Thus, apart from a boundary field effect, a Fokker-Planck treatment of the 
suprathermal electrons seems appropriate since the dominant plasma interactions are 
scattering and slowing down. 

We also remark that the particular form of the Fokker-Planck collision term in 
Eq. (1) is the lower order (in energy tansfer) Boltzmann analog of the full Rosenbluth 
expression detailed by Killeen and Marx [ 151. It is first order in Jfl& and has been 
used in S, applications where straggling (tail effects in computed energy deposition 
curves) are neglected. References [ 16-191 and [22] discuss the numerical effects of 
a*f/&* on the solution of the transport equation and [ 171 obtains the particular 
Fokker-Planck operator employed herein, but we omit the 8*f/8v2 term in the 
following analysis. 

III. MULTIGROUP DISCRETE ORDINATES 

The discrete-ordinates approximation assumes that the value of the anguIar flux, or 
ordinate, is determined at sets of discrete directions Q, = (u,,,, q,,,, <+) with 
m = 1) 2, 3 ,...) M. The corresponding angular flux is denoted by 

.L(r, c) =f(r, a,, ~1% (12) 

with E the energy. Angular integrals and moments involving f, are evaluated with 
quadrature weights w, 

I f (r, fk, E) d.0 = 4n 5 w, f,. 
l?l=l 

(13) 

Gaussian sets @,, w,,,) are employed in our applications. The angular terms in 
Eq. (6) are differenced using sets of angular coefficients a,, ,,* which satisfy 

(a m+ 112 - a,- ,,*> = -kw,,,rU,,,, (14) 
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with k = 0, 1, 2 in plane, cylindrical, and spherical geometry, respectively, m f j 
denoting edge values, and 

a,,* = a, = 0. (15) 

In all geometries, the angular streaming terms are written at the cell center m 

a! w, - ( 1 an m =a,,,,,f,,,,,-aa,-,,,f,~,,,. 

and the recursion relationships, Eq. (14), recover the analytic form in the limit of 
small mesh spacing [ 11. 

The multigroup approximation consists of a similar partitioning of the energy 
domain E into G subintervals, g = 1, 2. 3,..., G. The flux for group g is written 

and represents the total flux in the energy interval. Integrating Eq. (1) over dc 
generates the multigroup equations in the standard fashion [ 1). Before writing the S, 
equations, we make the diamond approximation [l-3] by assuming that the cell 
centered angular fluxes are averages of the edge values, 

Sweeping through the angular mesh recursively requires, by virtue of Eq. (18). 

The particular term fg,,2 corresponds to ,U = - 1 and is specified to start the 
calculation in curvilinear one-dimensional geometries. 

Integrating Eq. (1) over de, making the discrete ordinates approximation and using 
Eqs. (5), (6), (14), (16), and (18), we obtain for plane, cylindrical, or spherical one- 
dimensional geometries (q = x. p, r) 

with u, the average group velocity and 

(21) 
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Equation (20) is the Fokker Planck transport equation for electrons with electric 
fields in the S, representation. All that remains is specific reduction of the derivative 
terms in Eq. (20). 

In the continuous approximation [ 16, 171 energy transfers (upscatter, downscatter) 
are only allowed between adjacent groups. The continuous approximation 
(continuous slowing down) is appropriate for small angle scattering where 
momentum and energy transfers are small. Such is usually the case for higher-energy, 
charged particles moving through denser, colder background materials [ 11, 121. 
When collective or large scattering angle processes are important, energy transfers 
become greater and the scattering matrix must couple more energy groups. The fric- 
tional term is thus differenced in the downscatter mode 

while differencing of the field term depends on the sign of ,um. We write 

(22) 

(23) 

where & is used as the sign of ,u,. The angular derivatives are cast into the form of 
an “inscatter minus outscatter” source by expanding the angular flux in spherical 
harmonics. Details are recounted elsewhere [ 16, 171 and we quote the final result 

with 

and 

Pi = Pi - ($T) (::2;; ,(y[Z :; 9 

pi= (~) 2(2M2 - 2M- 1) 
(2M + 1)(2M - 3) ’ 

(24) 

(25) 

(27) 
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for 

(28) 

The solution strategy for Eq. (20) is the standard inner-outer iteration scheme [ 1 ] 
employed in production transport codes. The inner sweep is the within group 
iteration, while the outer sweep is over all energy groups. If upscatter is not present 
(E = 0), only one outer sweep is necessary since the Fokker-Planck collision term 
only downscatters particles in energy. The ordering of the groups g is from highest to 
lowest energy. 

Obviously, we recast Eq. (20) into the transport form for spatial differencing 

with 

The formal solution to Eq. (29) is 

(31) 

and we retain Eq. (3 1) exactly in the following. For sake of speed, approximations to 
the integral are plausible [7] but not of direct importance for this analysis. Any 
approximation to the integral amounts to a differencing scheme. We have tested a 
number of schemes based on Eq. (3 1) and found that the exponential representation is 
efficient, accurate, and an improvement over lower order approaches. Since electron 
transport so closely resembles deep neutral particle penetration, an efficient spatial 
scheme is necessary. Accordingly, we perform the exact numerical integration 
required by Eq. (31) using an adaptive quadrature technique. 17 ]. 

There exist a number of similar analyses for charged particle tracking with the 
Fokker-Planck operator or an S, approach. None carry the electric field through the 
transport equation, but we mention them for completeness. The multigroup diffusion 
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method of Corman et al. [IS] is not suitable for localized sources or highly 
anisotropic scattering. The moments technique of Haldy and Ligou [ 191 is best in 
infinite media applications. The LSN method of Antal and Lee [ 201 and the integral 
tracking technique of Moses [ 211 account for frictional energy losses due to 
scattering but neglect angular deflections. Mehlhorn and Duderstadt [ 221 modified 
the TIMEX code to perform electron transport calculations in one-dimensional 
geometries while Morel ] 161 showed how to use standard S, codes to obtain angle- 
energy integrated quantities for charged particles. The latter two efforts somewhat 
parallel our developments. 

IV. ELECTRON ENERGY DEPOSITION 

Theoretical deposition calculations [ 23-25 J for incident beams of electrons 
typically use the Spencer moment technique [26] or some close variant. Experimental 
measurements [27-301 have also been made, as well as (earlier mentioned) detailed 
Monte Carlo simulations. None of the computational approaches include or consider 
electromagnetic effects. Some include Bremsstrahlung production. Our intent is to 
give a rather broad, yet simple, parametrization to energy deposition profiles with 
and without electric fields, to examine energy scaling of the profiles, and to compare 
our computations with other analyses for monoenerg~tic and M~weili~ sources. 
Bremsstrahlung processes are not included in our development, but extensions to 
include these processes are feasible within the present framework (as additional 
scattering terms). In high Z materials and dense, hot backgrounds Bremsstrahhrng 
effects on electron ranges and deposition profiles are nonnegligible. Our Monte Carlo 
calculations indicate that neglect of electron-ion Bremsstrahlung in the following 
applications has small effect on results. Since inclusion of Bremsstrahlung production 
provides another energy loss path for electrons, one reasonably expects some 
shortening of ranges and sharpening of deposition profiles. 

In the context of the previous sections, the local energy deposition is given as the 
difference between energy inflow and outflow over a spatial mesh cell. Defining local 
deposition as i3, we have 

D(xi)= 5 cc y tf,,(xi+1,2)Ai+1/2-Sgm(Xi-1/*)Ai-1/21 WmlPml 
g=1 rn=I 

+ 5 % ,I,, ~f~~x~-1/2~Ai-1/2~fRm~Xi+IIZ~Ai+*l*lWnlElml~ (32) 
g=1 

with A the appropriate area elements at the spatial cell edges. Leftward directions 
correspond to pu, < 0 (m = I,..., M/2) while rightward directions correspond to 
& > 0 (m = M/2,..., M). 

Our first task will be the validation of the transport scheme described in the 
foregoing. We have made a number of tests and comparisons with exact analytic and 
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TABLE I 

Transmitted Currents for Amsotropic Boundary Source 

d(cm) 0 (cm) 
j J 

(Exact) (Discrete ordmates) 

0.5 0.10 0.930 0.930 
1.0 0.10 0.869 0.867 
1.5 0.10 0.816 0.813 
2.0 0.10 0.769 0.765 
0.5 1.00 0.571 0.571 
1.0 1.00 0.400 0.399 
1.5 1.00 0.307 0.305 
2.0 1 .oo 0.250 0.248 
0.5 10.00 0.118 0.1 18 
4.0 10.00 0.025 0.025 
8.0 10.00 0.008 0.008 

10.0 10.00 0.007 0.006 

Monte Carlo predictions for a number of different source configurations, geometries, 
and materials and found good agreement. Consider the following comparisons. 

As a simple test of scattering, we take a uniform slab of thickness d and work in 
the isotropic limit of no slowing down and no fields (E = ye =/I, = 0). An anisotropic 
boundary source of electrons of the form a + by, with y the angle incidence, is placed 
on the left boundary. Bethe [ 311 has analyzed this problem analytically and we 
compare transmitted currents at the right boundary in Table I. An S,, single group 
quadrature, and constant cross section are assigned to the slab. The agreement in the 
transmitted electron currents is excellent. 

Similarly, we treat a highly (forward peaked) anisotropic boundary source of 
electrons incident upon the same slab of thickness d. We employ an S,, P, corrected 
cross section expansion [32] in the discrete-ordinates calculation. The cross section is 
again normalized to unity and slowing down and fields are suppressed. Comparisons 
of discrete ordinates vs Monte Carlo predictions [5] of the inverse transmitted current 
at the right boundary are depicted in Fig. 1 for the two boundary source by2. by5. The 
straight line joins the circled discrete-ordinates predictions and the squares give the 
Monte Carlo results. Agreement is again good. 

As a third case, we consider monoenergetic electrons normally incident upon a 
slab of CH, (d = 0.1342 cm) with energies of 40, 60, 80, and 100 keV. An S,, P, 
quadrature with 40, 60, 80, and 100 energy groups is employed. Our energy groups 
are equally spaced at 1 keV. Figure 2 compares deposition in the slab for each of the 
four incident energies. The S, predictions are given by dashed lines and the Monte 
Carlo [5] results by dots. The agreement is again good and we will shortly consider a 
parametric representation of the curves. 

Finally, consider the monoenergetic electron sources in an H, sphere (d = 0.10 cm) 
in the presence of a constant electric field (E = 2750 statcoul/cm2) directed inward 
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FIG. 1. Inverse 
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along the radius. The field traps the electrons in a smaller effective region, enhances 
the energy deposition and helps to prevent leakage. Field reversal has the opposite 
effect. The S, results are tabulated with crosses while the Monte Carlo predictions 
are joined by lines in Fig. 3. 

The S, computations were performed on a spatial mesh of cell width 0.0002 cm. 
Refining the spatial mesh beyond 0.001 cm resulted in less than 1% change in 
computed quantities. Typically S, angular quadratures were sufficiently accurate to 
track suprathermal electrons in our applications (3%-6% agreement with Monte 
Carlo) but we employed S, and S, sets to further narrow combined spatial-angular 
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FIG. 2. Deposition profiles in CH, for monoenergetic electrons. 
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FIG. 3. DepositIon profiles in H, for monoenergetlc electrons m the presence of an electric field. 
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differencing effects on the solutions. Our cross section expansions were truncated at 
P n-l for a given S, order and were transport corrected, thus yielding solution 
equivalence with the P,-, flux moments expansion results [ 16,321. 

Close relative agreement in the various comparisons would seem to validate the 
overall approach. The S, calculations require seconds while corresponding Monte 
Carlo computations typically require minutes. As the material regions deepen, the 
Monte Carlo calculations require more time or become less meaningful statistically. 

V. MONOENERGETIC ELECTRONS,~ALING AND FITS 

Consider monoenergetic, normally incident beams of electrons on slabs of CH,. 
H,, and LiH plasmas at normal solid density and various background temperatures 
(r, = Ti = 0.333 keV, 1 keV, 3 keV). A set of deposition profiles for CH, at 1 keV 
has been given in Fig. 2 using an S,, P, multigroup structure. Employing Eq. (32), it 
is simple to obtain the ranges of electrons in an S, calculation of energy deposition. 
Figure 4 tabulates the corresponding ranges for the three materials at a temperature 
of T = 1 keV for 40, 80, and 120 keV incident electrons. Assuming scaling with 
energy permits the single parameter power law, 

R = Ro(c/qJq, 

which is least squares tit to Fig. 4 using 

In R = In R, + q In (E/E,,). 

(33) 

(34) 
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il.0 46.0 Eli.0 ii.0 
[KEVI 

FIG. 4. Range-energy curves in H,, CHZ, and LiH. 

The distance R was obtained from Eq. (32) by requiring D(R) < lop4 keV. Table II 
compiles q for the three materials of the various background temperatures. In the 
range 0 < E < 150 keV, we will employ q = 1.8. The baselines (E,,, R,) can be taken 
from Table III which lists the range of 100 keV electrons (sloe, R,J. 

The parabolic shape of the energy deposition profiles, of which Fig. 3 is a represen- 
tative candidate for CH,, suggests the lit 

C?D 
-=a+bx+cx2, 
ax 

TABLE II 

Scaling Fitting Parameter (q) 

(35) 

T (keV) 

0.333 
1.000 
3.000 

LiH CH> HZ 

1.813 1.807 1.811 
1.816 1.808 1.813 
1.817 1.809 1.814 
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TABLE III 

Range (I?,,,) of 100 keV Electrons 

T (keV) LiH (cm) CH, (cm) H,(cm) 

0.333 0.026 0.013 0.092 
1 .ooo 0.025 0.012 0.083 
3.000 0.024 0.011 0.077 

subject to the constraint 

I R aD 
-dx=E, 

0 ax 

i?D 47tne4 
CYX 

=-In/i,. 
X=0 E 

aD - 
ax 

= 0, 
x=R 

(36) 

(37) 

(38) 

with R the range for incident electron energy E. Constraint equations (36)-(38) 
merely enforce energy conservation across the region 0 < x < R and normalize the 
initial stopping power to the incident energy [ 11, 141. From the above, we find 

4nne4 ln ~ a=----- 
& r, 

(39) 

In these calculations, some of the incident electrons are backscattered out of the 
medium so that the energy deposited is less than E. For low Z plasmas, this effect is 
negligible. For higher Z material, this could be corrected by reduction of the factor c 
in Eq. (39). The backscattered leakage is easily computed at the incident boundary. 

VI. MAXWELLIAN ELECTRON&SCALING AND FITS 

Of particular interest in hot electron applications [9, lo] is the one-dimensional 
Maxwellian distribution 

f(c) = (A%-“’ exp(--E/T), (40) 
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normalized to unity over 0 < E < co for T the temperature. The average energy 6 of 
this distribution is 

i” 
c?2 

g= $(E) de = T/2. 
-0 

The energy deposited by a normally incident Maxwellian source of electrons is 
obtained from Eqs. (35), (39), and (40) 

F-l!2 (a + bx + cx2) expf-s/T) dc, 

with E(X) the minimum energy necessary to reach x. To close Eqs. (35) and (42) 
within the scaling imposed by Eq. (33), elimination of the stopping power term 

(43) 

is proposed by the range-energy constraint. In the absence of scattering [ 111 and by 
simple dimensional arguments 

a - E/R, (44) 

which, from Eq. (33), yields 

a&- & 
==1.8R=a. (45) 

Equation (42) is thus written 

g = (xT)-~/~ l;x, G exp(-&/T)[ 1 f 6.8(x/R) - 7.8(x/R)‘] dc. (46) 

To give some feeling for the goodness of fit, Fig. 5 compares Eq. (46) with an Si6, 
50 group calculation in CH, for T = 50 keV. Background temperature in the CH, 
slab was taken to be I keV. Agreement between the S, calculation (dashed line) and 
the fit equation (46) (solid line) is seen to be excellent for deeper regions and good for 
shallower penetrations. In the multigroup calculation, we require 0 < E < 150 keV as 
the range consistent with Fig. 4. Above 150 keV, the scaling parameter q - 1.8 drops 
off. Our calculations indicate that a fixed power scaling law, such as Eq. (33), is valid 
over roughly 150 keV energy ranges and thus the approach described need only be 
recalibrated to a different scaling parameter q for some other range. 

Consistent with Eq. (41), 

I 
O” aLt 

- dx = T/2. 0 ax (47) 
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T-50 KEV 

o.ooo 0.002 0.004 o.om 0.000 0.010 0.012 
ICM) 

FIG. 5. Deposition profile in CH, for Maxwellian electrons. 

Changing variables from E to y, 

y=x/R, (48) 

and imposing the scaling law, Eq. (33), so that the lower limit on the integrand of 
Eq. (46) becomes 

recasts Eq. (4) 

E(X) = E,(x/R,)“‘.~ = (x/~)“‘~‘, (49) 

where 

exp(-A/y”‘.B)y-5’6( 1 + 6.84’ - 7.8~~) dy, 

K = (1.8)-* i,c-“‘(T/~)@/#‘6, 

A = (x/py8, 

p = {T’.8. 

Employing the asymptotic limits (A + 0, co). we fit the deposition profile 

(50) 

(51) 

- 

g = K exp(-d) G(A), (52) 



FOKKER-PLANCK METHOD FORELECTRONENERGY 223 

FIG. 6. Fit comparison for maxwellian electrons in H,. 

with 

G(A) = 8.28(1 + 1.3L”3 + 2.121 + 0.28A2)-‘. (53) 

Figure 6 compares the fit equation (52) against the exact equation (46) for 
Maxwellian hot electrons (T= 40 keV) incident on a slab of H, plasma. The joined 
line represents the lit while the dots are the result of numerical integration of 
Eq. (46). 

The scaling described in this and the previous section is appropriate for slab 
geometries. It is not valid in curvilinear geometries unless the range is small 
compared with the deposition radius or the curvilinear terms in the transport 
equation (29) are small @, Y + co). The scaling laws are limited to roughly a range of 
energy 0 < E ,< 150 keV. At higher energies, q = 1.8 underestimates the energy loss in 
the shallower regions and overestimates energy deposition at greater depths. 
Extension of the method to higher energies merely requires a recalibration of the 
power scaling parameter q. In the range 150 keV < E ,< 300 keV, for instance. we 
have found q = 1.4. 

VII. ELECTRIC FIELDS. SCALING AND FITS 

The presence of an electric field E in the interior of a plasma obviously modifies 
the deposition and density profile of electrons. Space charge separation produces 
local fields which self-consistently change electron densities, mean free paths, and 
hence solutions to the transport equation. In laser pellet applications, for instance, 
intense electric fields in the plasma sheath surrounding the ablating pellet effectively 
trap and turn (reflect) leaking electrons back into the target. Equation (29) can be 
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used easily in general applications involving electric fields where E is user specified. 
However, to quantify field effects on deposition profiles in a manner akin to the 
previous two sections, we hmit discussion to uniform, constant fields in the plasma 
interior. We also work in the weak field approximation 

4me4 
eE<- 

E In A,, 

so that the plasma is still collisionally dominated. 
From Fig. 3, it is appararent that electric fields increase/decrease effective ranges, 

but have small effect on the shape of the deposition curve. Taking the constant 
electric field E along the x direction of the slab, we recast Eq. (36) 

where the plus sign holds for electric fields directed in the positive direction and the 
minus sign for fields in the negative direction, Generally, the plus sign holds for fields 
in the direction of electron streaming while the minus sign is employed for fields 
acting against the flow. The boundary normalizations Eq. (37) and (38), remain 
unchanged. Applying Eqs. (37), (38), and (55) to Eq, (35) yields 

47cne4 
a=-ln~!~, 

& 

b=$ 

Equation (55) merely conserves energy in the system. 

~RF-dx=~+ iReE&, 
0 -0 

(56) 

(57) 

with F the total force. The previous scaling law, Eq. (33), is rewritten 

R =RJ(c: -f eER)/(q, rt eERoJ4, (581 

and thus recalibrates the range-energy curves to eE. All the foregoing analyses 
remain intact with the new definitions implied by Eqs. (56) and (58). 

Figure 7 compares the tit equation (56) to the results obtained for 60 keV normally 
incident electrons in an S,, P, corrected multigroup calculation. Agreement is 
excellent. The line represents the tit while the dots correspond to the S, calculation 
(E = 2750 statcoul/cm2) in H,. 



FOKKER-PLANCK METHODFORELECTRON ENERGY 225 

FOG. 7. Deposition profiles and fit comparison for 60 keV electrons m the presence of an electrtc 
field. 

VIII. Summary 

We have detailed the one-dimensional approach, methods, and modifications for 
transporting electrons in plasmas with the S, method in the Fokker-Planck approx- 
imation. Detailed comparisons and predictions of the method have been given which 
show that the approach is accurate, efficient, and convenient. Focusing on slab 
geometry, parametric tits to energy deposition profiles have been obtained using a 
power scaling law (range-energy curve) valid over a range of 150 keV. Electric fields 
have been included in the analysis under the weak field limit. As a production 
technique in large code applications, the S, method for electrons is a viable aher- 
native to more time-consuming Monte Carlo calculations and a valuable means for 
parameter and benchmark studies. 
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